翻訳と辞書
Words near each other
・ Symplast
・ Symplecta
・ Symplectic
・ Symplectic basis
・ Symplectic category
・ Symplectic cut
・ Symplectic filling
・ Symplectic frame bundle
・ Symplectic geometry
・ Symplectic group
・ Symplectic integrator
・ Symplectic manifold
・ Symplectic matrix
・ Symplectic representation
・ Symplectic space
Symplectic spinor bundle
・ Symplectic sum
・ Symplectic vector field
・ Symplectic vector space
・ Symplectite
・ Symplectization
・ Symplectomorphism
・ Symplectrodia
・ Symplectromyces
・ Symplegades
・ Symplesiomorphy
・ Sympleurotis
・ Sympleurotis albofasciatus
・ Sympleurotis armatus
・ Sympleurotis rudis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Symplectic spinor bundle : ウィキペディア英語版
Symplectic spinor bundle
In differential geometry, given a metaplectic structure \pi_\colon\to M\, on a 2n-dimensional symplectic manifold (M, \omega),\, one defines the symplectic spinor bundle to be the Hilbert space bundle \pi_\colon\to M\, associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group —the two-fold covering of the symplectic group— gives rise to an infinite rank vector bundle, this is the symplectic spinor construction due to Bertram Kostant.
A section of the symplectic spinor bundle \, is called a symplectic spinor field.
==Formal definition==
Let (,F_) be a metaplectic structure on a symplectic manifold (M, \omega),\, that is, an equivariant lift of the symplectic frame bundle \pi_\colon\to M\, with respect to the double covering \rho\colon )\to ).\,
The symplectic spinor bundle \, is defined 〔 page 37
〕 to be the Hilbert space bundle
: =\times_L^2(^n)\,
associated to the metaplectic structure via the metaplectic representation \colon )\to (L^2(^n)),\, also called the Segal-Shale-Weil 〔
〕 representation of ).\, Here, the notation ()\, denotes the group of unitary operators acting on a Hilbert space .\,
The Segal-Shale-Weil representation 〔
〕 is an infinite dimensional unitary representation
of the metaplectic group ) on the space of all complex
valued square Lebesgue integrable functions L^2(^n).\, Because of the infinite dimension,
the Segal-Shale-Weil representation is not so easy to handle.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Symplectic spinor bundle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.